I- Probabilités discrètes

i p est une probabilité, alors \leq p \leq	
estde A donc $p(\overline{A}) = \dots$	
∩ B se litet signifie	
∪ B se litet signifie	
$(A \cup B) = \dots$	
• Formule des probabilités totales :	
• $p_B(A) = \dots$	
et B indépendants ⇔	
et B incompatibles ⇔	
• Loi de probabilité :	
onner la loi de probabilité consiste	
Espérance mathématique :	
Variance et écart type :	
Soit X une variable aléatoire qui compte le nombre de succès et p est la probabilité d	u
succès. Si on a répétition de n épreuves indépendantes de Bernoulli alors	
Et p(X=k)=	
$E(X) = \dots \qquad \qquad et \; V(X) = \dots$	
Avec la calculatrice :	
p(X=k)=	
n(X <k) =<="" td=""><td></td></k)>	
III A > K I =	

II- Probabilités continues

f est une densité de probabilité sur un intervalle I =[a;b] ssi

- 1)
- 2)
- 3)

 $p([\alpha;\beta]) = p(\alpha \le X \le \beta)$

$$p(X \le \alpha) = \dots p(X \ge \alpha) = \dots$$

E(X) =.....

• Loi Uniforme sur [a;b]

Densité de probabilité :.....

$$p([\alpha;\beta]) = \dots$$

E(X) =.....

• Loi Normale centrée réduite sur]-∞;+∞[

Densité de probabilité :.....

 $p(a \le X \le b) = \dots$

$$p(X < k) = c \text{ donc } k = \dots$$

p(-a ≤X≤a) =

Loi Normale de paramètres (μ,σ²) sur]-∞;+∞[

La variable X suit une loi normale de paramètres μ , σ^2 si et seulement si la variable $Y = \frac{X - \mu}{\sigma}$ suit

la loi centrée réduite, ainsi p(a<X<b) =

$$\mathsf{E}(\mathsf{X}) = \dots \qquad \mathsf{V}(\mathsf{X}) = \dots$$

 $p(a \le X \le b) = \dots$

$$p(X < k) = c \text{ donc } k = \dots$$

$$p(X \le \mu) = \dots$$

Les intervalles « un,deux,trois sigma »

$$P(\ \mu-\sigma\leq X\leq \mu+\sigma\)\approx....$$

P(
$$\mu$$
 – $2\sigma \le X \le \mu$ + 2σ) \approx

P(
$$\mu$$
 – $3\sigma \le X \le \mu$ + 3σ) \approx