LES NOMBRES COMPLEXES:

PARTIE 1: CALCULS ET INTERPRETATIONS GRAPHIQUES

Terminales S, Enseignement Obligatoire

I- Introduction

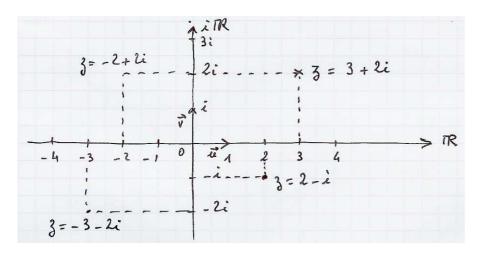
1) Approche numérique : Extension de \Re 1'ensemble des réels

Dans \Re , une équation du 2^{nd} degré dont le Δ est négatif n'a pas de solution. Nous inventons donc de nouveaux nombres, les complexes, pour que de telles équations aient des solutions.

Ces nombres sont de la forme z = x + iy où x et y sont des réels et où i est un nombre imaginaire tel que $i^2 = -1$ (voir II pour la résolution de telles équations)

2) Approche géométrique

L'ensemble des réels \Re peut être représenté par une droite. De même C, l'ensemble des complexes, peut être représenté par un plan rapporté à un repère orthonormé $(0, \vec{u}, \vec{v})$ dont l'axe des abscisses $0\vec{u}$ est la droite des réels et dont l'axe des ordonnées $0\vec{v}$ est la droite des « imaginaires purs » c'est-à-dire les nombres de la forme iy où $i^2 = -1$ et $y \in \Re$



II- Définitions et règles de calcul

- 1) Propriétés : Les opérations de \Re , addition, soustraction, multiplication, ont les même propriétés dans C que dans \Re :
 - (x + iy) + (x' + iy') = (x + x') + i(y + y')
 - (x + iy) (x' + iy') = (x x') + i(y y')
 - (x + iy). $(x' + iy') = xx' + ixy' + ix'y + i^2yy' = xx' yy' + i(xy' + x'y)$

2) <u>Définitions</u>

Soit z = x + iy un nombre complexe avec $x \in \Re$, $y \in \Re$

- x = partie réelle de z = Re(z)
- y = partie imaginaire de z = Im(z)
- le conjugué de z, noté \bar{z} , est le complexe tel que $\bar{z} = x iy$
 - a) si $x \in \Re$, x = x
 - b) si y $\in \Re$, iy = -iy, en particulier i = -i
 - c) $z = (x + iy)(x iy) = x^2 ixy + ixy i^2y^2 = x^2 (-1)y^2 = x^2 + y^2$

donc $z\overline{z} = x^2 + y^2 \in \Re^+$

- $d) \quad z = \mathbf{z}$
- Quand on écrit un complexe z sous la forme z = x + iy on dit que z est sous sa forme algébrique.

- 3) Propriétés : Soit $z \in C$ et \overline{z} son conjugué
 - $z + \overline{z} = 2 \operatorname{Re}(z)$ c'est un réel. $z \overline{z} = 2 \operatorname{i} \operatorname{Im}(z)$ c'est un imaginaire pur.
 - $\bullet \quad \overline{z+z'} = \overline{z} + \overline{z},$
 - $\frac{1}{zz'} = \frac{1}{z} = \frac{1}{z}$
 - $\bullet \quad \left(\frac{z}{z'}\right) = \frac{\overline{z}}{\overline{z'}}$

Division par un nombre complexe :

Pour mettre sous forme algébrique la division de deux nombres complexes, on multiplie en haut et en bas par le conjugué du dénominateur.

En effet:

$$\frac{x+iy}{x'+iy'} = \frac{(x+iy)(x'-iy')}{(x'+iy')(x'-iy')} = \frac{xx'+yy'+i(x'y-xy')}{x'^2+y'^2} = \frac{xx'+yy'}{x'^2+y'^2} + i\frac{x'y-xy'}{x'^2+y'^2}$$
 qui est bien une forme algébrique.

5) Equations du second degré : $az^2 + bz + c = 0$ Posons $\Delta = b^2 - 4ac$ avec **a, b et c réels**

- On sait déjà que $az^2 + bz + c = 0$ admet 1 ou 2 solutions réelles quand Δ est positif ou nul.
- Si Δ est négatif az² + bz + c = 0 admet deux solutions complexes conjuguées:

$$z_1 = \frac{-b + i\sqrt{|\Delta|}}{2a}$$
 et $z_2 = \overline{z_1} = \frac{-b - i\sqrt{|\Delta|}}{2a}$

III-Interprétations Géométriques

Forme algébrique : Coordonnées cartésiennes.

Nous avons vu que nous pouvions représenter un nombre complexe dans un plan rapporté à un repère orthonormal $(0, \vec{u}, \vec{v})$. Le nombre complexe z = x + i y est alors représenté par le point de coordonnées (x;y). Nous avons donc dans $(0, \vec{u}, \vec{v})$, les mêmes propriétés que dans le plan affine (0, I, J) ou que dans le plan vectoriel (0, i, j)

- Donc à tout complexe z = x + iy nous pouvons associer le point M(x ; y)On dit que z est <u>l'affixe</u> de M
- De même si z_A est l'affixe de A et z_B l'affixe de B on dira que l'affixe de \overrightarrow{AB} est $z_B z_A$.

Coordonnées polaires, module et argument

Soit M le point d'affixe z = x + iy,

• La distance $OM = \sqrt{x^2 + y^2}$ (puisque nous sommes dans un repère orthonormé).

Nous appellerons module de z, noté |z|, ce nombre

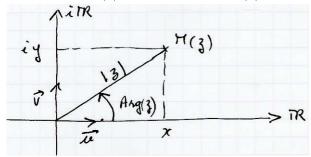
$$|z| = \sqrt{x^2 + y^2}$$

Remarques:

- $o |z|^2 = z\overline{z}$
- o $|z| \in \Re^+$
- L'angle (\vec{u}, \vec{OM}) orienté est appelé Argument de z, noté arg(z)

- En résumé, si un nombre complexe z est l'affixe de M
 - si z = x +iy est sa forme algébrique, x et y sont les coordonnées cartésiennes de M
 - et |z|, arg(z) sont les coordonnées polaires de M.

Nous pouvons donc remarquer (en faisant référence aux coordonnées polaires) que si z = x + iy, $x = |z| \cos[Arg(z)]$ et $y = |z| \sin[Arg(z)]$



- <u>Définition</u>.: On peut donc écrire : $z = |z|(\cos \vartheta + i \sin \vartheta)$ avec $\vartheta = \arg(z)$ Ceci est appelé <u>la forme trigonométrique</u> de z
- Propriétés du module :

$$\blacksquare \quad |\overline{z}| = |z|$$

$$|z|^2 = zz$$

• Propriétés de l'argument :

•
$$\operatorname{Arg}(zz') = \operatorname{Arg}(z) + \operatorname{Arg}(z') [2\pi]$$

•
$$\operatorname{Arg}\left(\frac{z}{z'}\right) = \operatorname{Arg}(z) - \operatorname{Arg}(z') \left[2\pi\right]$$

•
$$\operatorname{Arg}(z^n) = \operatorname{n} \operatorname{Arg}(z) [2\pi]$$

•
$$\operatorname{Arg}(z) = -\operatorname{Arg}(z)$$

•
$$\operatorname{Arg}(-z) = \pi + \operatorname{Arg}(z)$$

• Remarque : $Arg(z^n) = n Arg(z) [2\pi]$ est une conséquence directe de la

Formule de Moivre:
$$(\cos \vartheta + i \sin \vartheta)^n = \cos(n \vartheta) + i \sin(n \vartheta)$$